

Thermal Considerations for High Power and Interplanetary CubeSats

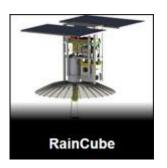
Danny Forgette
A.J. Mastropietro
Sara Spangelo
Jet Propulsion Laboratory,
California Institute of Technology

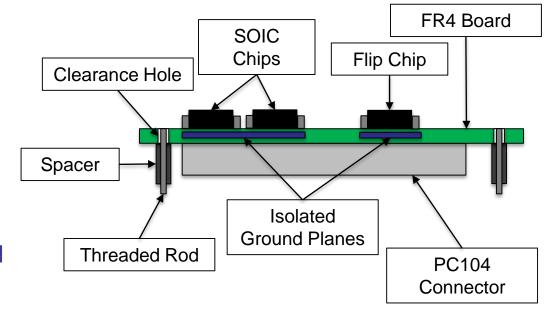
Outline

- Background
- Shortcomings of COTS CubeSat Architectures
- Thermal Design Solutions
- Mars-Bound Case Study
- Lessons Learned

Background

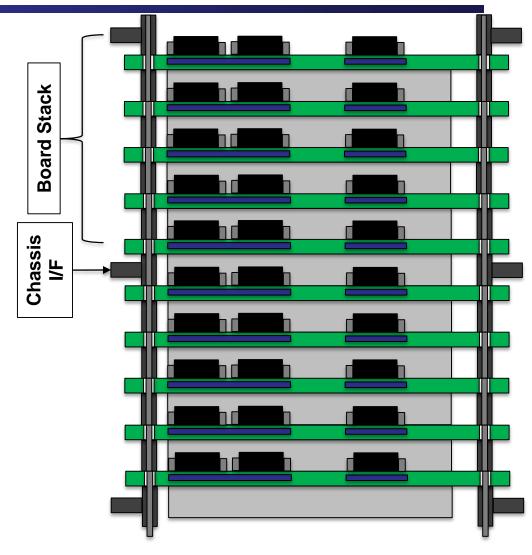
- The capability of CubeSat-class missions has grown substantially since their inception in 2003
 - Asteria CMOS Imager
 - ISARA Ka-band Communication
 - Lunar Flashlight Solar Sail Propulsion
 - MarCO UHF → X-band Relay
 - NEAScout Solar Sail Propulsion
 - RainCube Ka-band Radar



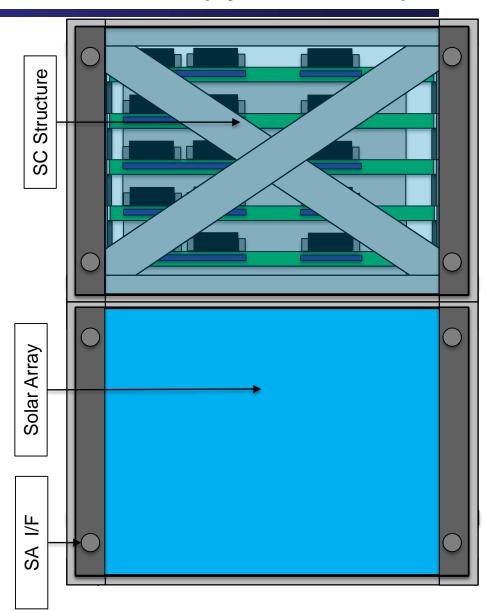


Comparison of Typical CubeSat Mission in 2003 vs. 2015

	2003	2015
Mass (kg)	1	14
Volume (U)	1	6
Power (W)	2	40
Payload	 Active Torque-Rod ACS Body-Mounted Solar Array (x6) CMOS Imaging System GPS Antenna (x2) GPS Receiver Li Battery Pack On-Board Computer (C&DH) UHF Radio (Rx/Tx) UHF Antenna (x2) 	 Active Reaction Wheel ACS Deployable Solar Array (x2) Deployable UHF Antenna Deployable X-Band Antenna Deployable X-Band Feed Cold Gas Microprop System Command and Data Handling Electrical Power System Li Battery Pack Low-Noise Amplifier Star Tracker Solid-State Power Amplifier UHF Radio (Rx) X-Band Radio (Rx/Tx)
Destination	Earth	Mars, Moon, Near-Earth Asteroid


Shortcomings of COTS CubeSat Architectures (Board – Level)

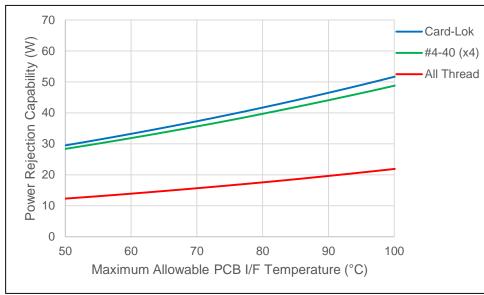
- COTS small outline integrated circuit (SOIC) parts have large internal thermal resistance (~40°C/W Junction-to-Case)
- Boards designed with single point ground in mind
 - Internal copper layers isolated from mechanical I/F
 - Minimal joint pressure at mechanical interface
 - Large conductive resistance throughout
- May need secondary dedicated thermal interfaces for high dissipating components

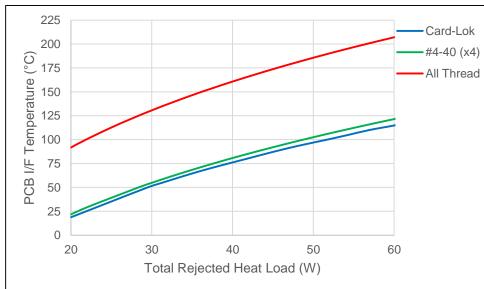

Shortcomings of COTS CubeSat Architectures (Subsys. – Level)

- Board-level mechanical interfaces stacked in series
- Long path length from board power sources to thermal sink
- Limited chassis tie-in locations
 - Exacerbates already poor conductive coupling
 - ΔT rise exponential with board distance to chassis I/F
- Threaded rod to chassis I/F is a clearance hole
- Limits permissible board dissipations > 2-3 W

Shortcomings of COTS CubeSat Architectures (System – Level)

- Lack of dedicated radiators
 - SA is dual-purpose structure
- Body mounted solar cells
 - Adverse loading when I_{draw} < I_{supply}
- Large in plane resistance
 - Light-weighted structure
 - Low SA substrate thermal conductivity (FR4)
- Weak SA conductive coupling to chassis
 - 4 x #4-40 per U

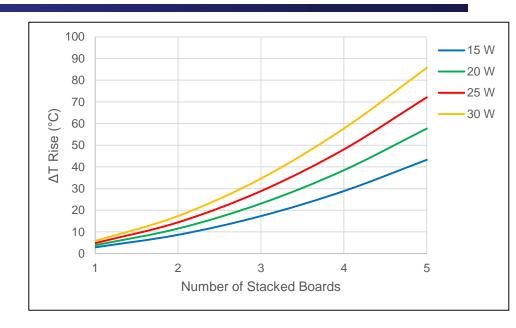

Shortcoming of COTS CubeSat Architectures


- Thermal design neglected throughout board, subsystem, and system-level assemblies
- Only solutions available to maintain acceptable component temperatures are operational constraints
 - Limits science return

Thermal Design Solutions (Board – Level)

- Limit use of high internal thermal resistance for active components
- Include copper layers that directly interface with mechanical mounting interface
- Provide interfaces for both die-sunk and flip chips (FPGA)
- Card-Lok and #4-40 (x4) possess > 2x power handling capability vs.
 COTs at given temperature
- Card-Lok and #4-40 (x4) run ~75°C cooler at given power load

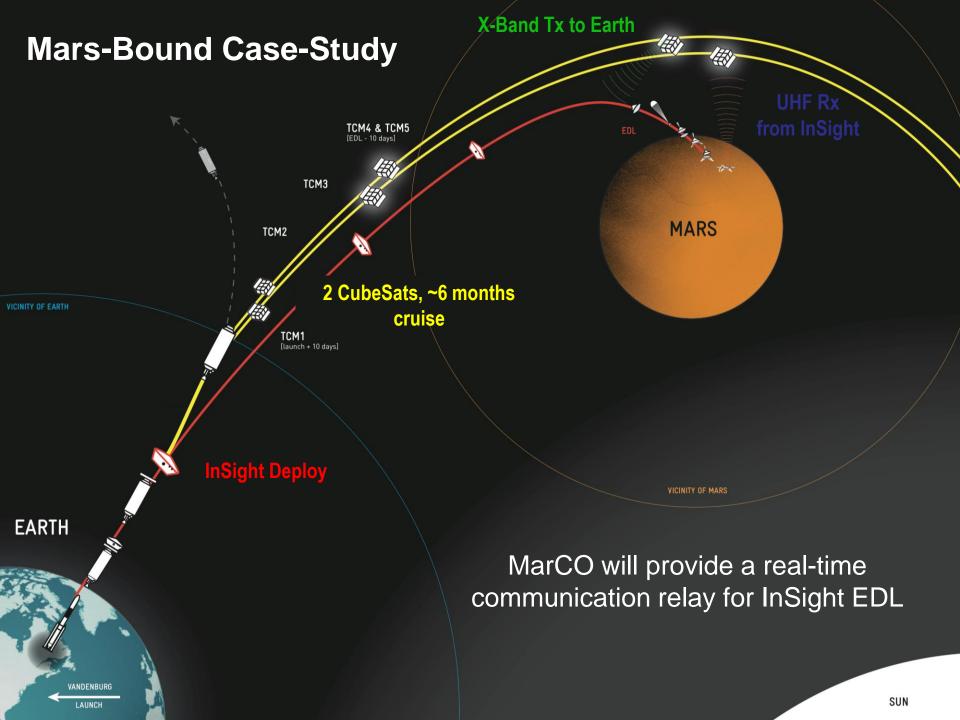




Thermal Design Solutions (Subsystem – Level)

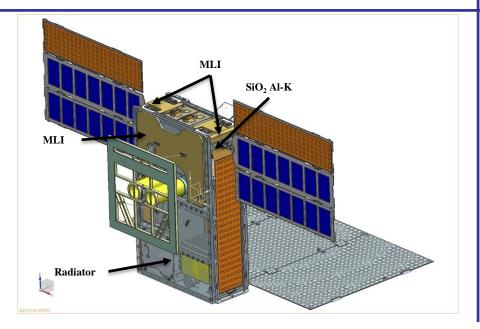
- Limit board stacking
 - Limit to 2-3 for modest power applications (15 20 W)
 - More may be acceptable for lowpower applications
- Discrete mechanical interfaces provide greater power handling capability

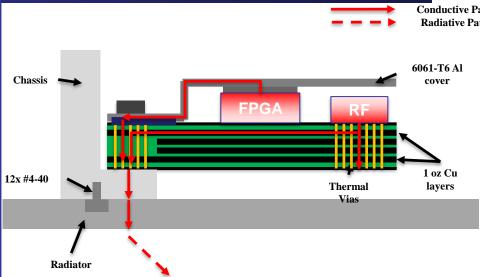
- Commercial = 70°C
- Industrial = 85°C
- Military = 125°C



 Plan for lower radiator temperature for stacked configuration to compensate for adverse ΔT

Thermal Design Solutions (System – Level)


- Eliminate use of non-isolated body-mounted solar cells
 - Decreases impact of high absorbed solar flux during charging
- Limit use of light-weighted structures to non-thermal interfaces
 - High-spreading resistance reduces effective radiator area (poor fin efficiency)
- Provide sufficient subsystem system thermal coupling
 - Use controlled volatile silicone-based gap filler
 - Don't skimp on the fasteners!
 - Fastener number is for thermal, not mechanical, reasons



Mars-Bound Case Study (MarCO)

- Transponder designed for thermal performance
 - Dedicated thermal PWB Cu layers
 - Custom Al thermal cover for FPGA
 - High conductance chassis
- All active H/W thermally coupled to radiator
 - Minimize ΔT (junction to radiator)
- High mCp interior (~5.2 kg: Electronics & Radiator)
 - Reduces dT/dt during peak power periods

- Designed for low power operation (ΣP_{bus} < 15 W)
- Radiator sized for S.S. -10°C operation at 15 W
 - Capability for ~ 3 hours transmit time
- MLI closeout large non-radiator surfaces
- SiO₂ Al-K closeout on small non-radiator surfaces
 - Reduces solar heat load near Earth
 - Reduces SC heat loss near Mars

Lessons-Learned

- Maintain traceability for critical TMM inputs (P_{diss}, duty cycles, component masses)
 - MEL/PEL tend to overestimate
 - HW CogE less likely to provide credible "will not fall below values"
 - Do the legwork to obtain reasonable estimates vs. carbon copy of MEL/PEL
- Maintain flexibility early on in the design phase
 - Rapidly changing configs, power modes, comp. masses and volumes
 - Implement a simple, robust design to absorb uncertainty
 - Maximize use of simple analyses to down select candidate thermal designs
- Delay detailed model construction until design solidifies
 - Overhead of detailed model early increases analysis turnaround time
 - Wait until higher fidelity will not be achieved until HW in hand